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I .  Phys. A: Math. Gen. 27 (1994) 4527-4536. Printed in the UK 

Tangent Lie'algebroids 

Ted Courantt 
Lake Forest College, Department of Mathematics, Lake Forest, U 60045, USA 

Received 28 September 1993 

Abstract. This paper shows that a Lie algebroid swcture on a smooth vector bundle A 5 Q 
gives rise to a Lie algebroid structure on the bundle T A  -% T Q ,  called the tangent Lie 
algebroid. The analysis uses global arguments A Lie algebroid A is equivalent to a certain 
Poisson swcture on A*, and the tangent bundle of any Poisson manifold has a tangent Poisson 
structure. The tangent Poisson swcture On TA' is then dualized to produce the tangent Lie 
algebroid stmchlre on T A .  Local calculations are used, and formulae for local brackets are 
given. 

1. Introduction 

Poisson brackets are central to the subject of Hamiltonian systems. Poisson brackets may 
be thought of as an algebra structure on some ring related to the ring of smooth functions 
C"(Q) on a smooth manifold Q. When the algebra exists on the ring of smooth functions 
itself, the manifold is said to have a Poisson structure determined by the Poisson bracket. 
A Poisson structure is equivalent to a bundle map n : T*Q + T Q  together with an 
integrability condition stating the Jacobi identity of the Lie bracket. A closed 2-form on 
a manifold Q determines a Poisson bracket on the ring of functions constant along the 
characteristic distribution of the 2-form; this is called a pre-symplectic structure on Q. 
A symplectic structure on a manifold is a pre-symplectic structure whose characteristic 
distribution is zero, i.e. the map n : T'Q + T Q  is invertible. 

A Lie algebroid is a vector bundle over a manifold with a Lie bracket on sections, and 
with a bundle map to the tangent bundle, called the anchor map, that is also a Lie algebra 
homomorphism on sections. Lie algebroids are very closely related to Poisson structures. 
A Poisson structure on a manifold Q is a particular kind of Lie algebroid structure on the 
cotangent bundle T*Q,  with anchor map n : T*Q -+ T Q ,  whose integrability condition 
is that the anchor is a homomorphism on sections; the bracket for this algebroid is written 
down explicitly in section 3. 

A Poisson structure on a manifold Q determines a special Poisson structure on the 
bundle T Q ,  so it is not surprising that a Lie algebroid structure on a bundle A + Q 
determines a Lie algebroid structure on the bundle T A  -+ T Q .  

We now introduce some useful notation. If (9') are a system of local coordinates on 
the manifold Q ,  then the induced coordinates on T Q  are given by (9i, 4j). Next, suppose 
that f E Cm(Q); we denote by f the 'prolongation' of f to T Q ,  namely the I-form d f 
viewed as a function on T Q .  Locally f is given by 

. af . 
f = -9 = f , ; L j ' .  

a9 
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We adopt the convention that upper indices are attached to functions, while lower indices 
are attached to sections of bundles. Finally, by the linear functions on A + Q, we mean 
the sections of the dual bundle A* + Q. 

2. Algebroids and Poisson structures 

We introduce some definitions and examples. 

Definition I .  A Lie algebroid over a manifold Q is a vector bundle A 4 Q together with 
a Lie algebra bracket on sections and a bundle map A & TQ, resulting in the following 
commuting diagram, which tosether satisfy two conditions: 

A L T Q  

(i) The map p is a Lie algebra homomorphism between sections of A and vector fields on 

(ii) The following Leibniz rule holds for a function f E C"(Q) and sections X and Y of 
Q (i.e. sections of T Q  S Q), 

A %  Q: 

IX, fY1 = f t X ,  Yl+ (P(X)f)Y. (2.2) 

D e f i n b r  2. A Poisson structure on a manifold Q is a Lie algebra bracket ( , ] on the 
ring of smooth functions C"(Q), which satisfies the Leibniz identity: 

{f,gh}=gW,h}+ I fgg th .  (2.3) 

(f, g) = (xldf  A dg) .  (2.4) 

K , r n r P  + n,;PnrL + K , ; x r j  = 0. (2.5) 

Equivalently, a Poisson structure on Q is a skew-symmetric bundle map n ; T*Q + 
T Q  whose associated 2-tensor (also denoted by K) determines the bracket on functions by 

The components of the tensor n are given by rrii = (q ' ,q i ]  in local coordinates (4'). 
The Jacobi identity for the bracket is then 

The left-hand side of this equation is the ijk-component of the tensor [K, n]-the Schouten 
bracket of K with itself. Thus a Poisson structure may be defined as a bi-vector field K 
such that the Schouten bracket [n, n] vanishes identically. 

According to the definition a Lie algebroid structure on T*Q + Q is a bracket ( E ,  p }  
on I-forms E .  p E r ( T * Q ) .  As indicated in the introduction, there is such a Lie algebroid 
bracket on 1-forms which agrees with the Poisson bracket on exact I-forms. 

3. Algebroids 

It is well known that linear Poisson stTuctures correspond to dual Lie algebras. For a review 
of these and other facts, see [16]. In a linear Poisson structure, the Poisson bracket on linear 
functions on the dud Lie algebra is given by the Lie algebra bracket on the Lie algebra 
elements. We now extend this relationship. 

Let [ , ] be an algebroid bracket on the bundle A % Q. Sections of A are linear 
functions on A*, and hence the algebroid bracket may be thought of as a Lie bracket on 
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the linear functions on A*. We may go further and define a Poisson bracket { , ] on A' 
as follows. Let b,  5 denote the linear functions on A" determined by p. U E l?(A), and let 
f, g E P ( Q )  be functions on the base. Then the relations 

determine a Poisson structure on A'; see [3] and [4]. That the Jacobi identity for ( , ] is 
satisfied for linear functions follows because A is an algebroid, and it is satisfied for terms 
mixing linear functions with functions on the base because p is a Lie algebra homomorphism 
(see [3]). We now show that any Poisson structure on a vector bundle, whose linear functions 
form a subalgebra, is dual to a Lie algebroid. 

Theorem I .  The bundle K : A -+ Q is an algebroid on Q with anchor p : A -+ T Q  if and 
only if the dual bundle A' + Q is a Poisson manifold whose linear functions form a Lie 
subalgebra. 

Proof. 
form a subalgebra. We may define an anchor p : A + TQ by 

Suppose we have a Poisson bracket { , 1 on A* --f Q such that the linear functions 

P(P) = { L L  I .  (3.4) 

p ( f p )  = fp (p )  whenever f E C"(Q) and p E r (A) .  (3.5) 

To prove that p is an anchor we must show that p comes from a bundle map, i.e. 

This is established by successive application of the Leibniz rule for the Poisson bracket. 
Let p ,  U E T(A), and let f, g E C Y Q ) ;  we may think o f f  and g as functions on A which 
are constant on fibres (i.e. we identify them with f o K ,  g o r  E Cm(A)) .  Now [ p ,  f u ]  = 
f{p, u)+u(p,  f] must be linear, so functions of the form [p ,  f )  must be constant on fibres. 
This means that (fp, g] is constant on fibres, so {fp, g) = f{p, g] + p{f, g] is constant 
on fibres; therefore {f, g] = 0 and {fp, gl = f{p, g]. Thus we have p ( f p )  = f p ( p )  and 
p is a bundle map. Finally. identifying p with 6 we obtain the derivation law 

Therefore p is an anchor and we have an algebroid bracket. I3 

4. Tangent Poisson structures 

As stated in the introduction. when a bundle map K : T'Q + T Q  makes Q into a Poisson 
manifold, there is a Lie algebroid structure on T*Q whose anchor is n. We now give this 
algebroid bracket, and determine as a consequence a Poisson structure on T Q  induced by 
ir; for a proof that the following bracket together with K form a Lie algebroid see [XI. 

Example 4.1. 
with anchor map ?I given by 

Given a Poisson structure K on Q ,  there is an algebroid structure on T'Q 

{a. PI = L r d  - &,v - d ( K b  A B )  (4.1) 
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where L is the Lie derivative on 1-forms 0r.B E r ( T * Q ) ;  see [3, 7 ,  121 and references 
therein. 

Applying the homotopy formula .C$ = tJd$ + d(fJtl), we get 

{CY, PI = ZcYJdg - rglda + d(RIu A 6). (4.2) 

Idf, d g l =  dIf, g1. (4.3) 

Note that for exact 1-forms CY = df and g = dg this gives us 

If we choose local coordinates (9') on Q ,  so that x has local components 
then this algebroid structure on T'Q is determined locally by 

= [q'. qj], 

in other words the structure functions of the Lie algebroid are given locally by r,: and the 
anchor components are given by d. 

The previous example shows that T'Q has a Lie algebroid structure whenever Q has a 
Poisson structure. By theorem 1, it follows that the dual bundle to T * Q ,  namely T Q ,  is a 
Poisson manifold whose linear functions form a subalgebra. 

Theorem 2. 
T Q  has a Poisson strucmre in tangent coordinatw (q', qj) given by the relations 

If Q has a Poisson structure given locally by nil in the coordinates (q'), then 

(4.7) 
[4i3 qi] = (4.8) 
I$, q j l  = R,y $ 

(qi, 411 = & (4.9) 
{ q i , q j )  = o .  (4.10) 

Prooj? This is an application of (2.1)-(2.3), 0 

Note that the linear functions do indeed form a subalgebra. This induced Poisson 
structure on T Q  is called the tangent Poisson structure; see [2-4]. For alternative methods 
of realizing the tangent Poisson structure, see [2, 51. 

5. Tangent Lie algebroids 

5.1. The swap map 

Let A -% Q be a Lie algebroid, and let p : A' X Q  A -+ 8 be the natural pairing 
p(u, a) = (U la).  We may take tangents to get T p  : TA* XTQ T A  -+ D7 x 8; locally 
this may be written as T p ( ( u ,  fi) ,  (a. 6))  = ((U la) , (U 16) + (ri la)).  We project onto the 
second factor, and denote the result 

{((U, U )  I (a.6))) = (U 16) + (ri la) . 
This is a non-degenerate pairing TA* X T Q  T A  -+ D7, and therefore we get an isomorphism 
T A  -+ (TA")' given locally by 

(a, 4 k (( ' I (a ,4  )) , 
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Theorem 3. The effect of the identification of T A  with (TA')' given by the tangent of 
the natural pairing is to 'swap' a and U .  

ProoJ The tangent pairing given above may be written as 

( K X , ~ )  I (a,ir))) = [ U  r i ~  [:I 
so that (a ,  U )  E T A  becomes identified with (U, a )  E (TA*)* .  

5.2. The algebroid structure on T A  

In this section we exploit theorem 1 several times, by replacing Lie algebroids with Poisson 
structures and vice versa. We begin with a Lie algebroid A -+ Q ,  so that A* is a Poisson 
manifold. It follows that TA* is again a Poisson manifold, with the tangent Poisson 
structure (a fact which also followed from theorem 1). Moreover, when viewed as a bundle 
T A  -+ T Q ,  its linear functions form a subalgebra. Therefore, by theorem 1, the bundle 
dual to TA* --+ T Q ,  namely (TA*)*  -+ T Q ,  is again a Lie algebroid. Thus whenever A is 
a Lie algebroid, there is an induced Lie algebroid structure on the bundle (TA')' -+ T Q .  
Finally, by using the swap map to identify T A  with T A * ,  we get an algebroid structure on 
T A  -+ T Q .  

We now determine the local representation of the induced algebroid structure on 
(TA*)* -+ T Q .  Choose a local trivialization of the bundle A -+ Q ,  i.e. local coordinates 
(q i ,  a j ) ,  where the ajs are linear functions on 4, determined by a local basis of sections 
aj E r ( A * ) .  

Our choice of coordinates and local trivialization of A determines functions giving us 
the bracket and anchor of A locally: 

(5.2) 

(5.3) 

[a;, aj] = c$ ak 
a 

p(ai)  =pi '  - aqj ' 

{ai,  a j )  = c:j ak 

Then according to (3.1)-(3.3) the Poisson structure on the dual bundle A* is given by 

(5.4) 

{a;, 4'1 = pi' (5.5) 
(qi, q'l = 0 .  (5.6) 

We now compute the tangent Poisson structure on TA" in the coordinates (q i ,  aj. q', a j )  
on T A  induced by the local trivialization @'.ai) on A. 

Theorem 4. The tangent Poisson structure on TA* is given by 
{hi,Uj) =c;ak +cijak k .  

k {ai, ajl = cijak 
(ai,Uj] = cijar, k 

I&, 4'1 = P i  

{ai, $1 = P: 
( U { ,  k j ]  = p !  

with all remaining brackets zero. 

(5.7) 

(5.8) 

(5.9) 
(5.10) 

(5.11) 
(5.12) 
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Proof: This is an application of (4.7H4.10). It is straightforward to check the Jacobi 
0 

Note that the linear functions of TA' + T Q  form a subalgebra under this tangent 

identity for these brackets, although this is guaranteed by theorem 1. 

bracket. It follows that the dual bundle (TA')* + T Q  is an algebroid. 

Theorem 5, 
bundle (TA")'  + T Q  which is given locally by 

The tangent Poisson structure on TA" induces an algebroid structure on the 

a a 

PruoJ We have re-written as a Lie algebroid the Poisson bracket of theorem 4. 

In shorthand we have the brackets 
[a, U ]  = Ca + cu 
[U .  a]  = ca 

[a, a ]  = 0 

(5.13) 

(5.14) 

(5.15) 
(5.16) 

(5.17) 

(5.18) 

n 

(5.19) 
(5.20) 
(5.21) 

with anchor p ( a ,  U )  = @U, pa + bU). 

commuting diagram 
Consider for the moment the Lie algebroid A 5 Q, and with anchor p ,  as the 

A ~ T Q  

4 A 
Q 

Taking tangents we get the diagram 
T A  2 T T Q  

(5.22) 

(5.23) 

and applying natural involution -: T T Q  + T T Q  and the identity T T T ~  =- OTTQ we get 
the diagram 

and hence we have this commutative diagram and the following theorem: 

(5.24) 

(5.25) 
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Theorem 6. 
algebroid structure on T A  + T Q .  with anchor map prA =- oTpa, given by 

The Lie algebroid A 5 Q, with anchor pA : A -+ T Q ,  induces a tangent Lie 
T X  

(5.26) [ai, a,] = i& u k  + c , ~  ar 

(5.27) [ai, aj] = ci j  ak 

[ai,Uj]=c$Uk (5.28) 
[ai, U j ]  = 0 (5.29) 

k 

P .  

(5.31) 

Proof We have simply written down the algebroid bracket on (TA*)* and then applied 
the swap map to get this bracket and anchor on T A .  

Although no further proof is needed, it is interesting to cany out a direct verification 
that the brackets and anchor above indeed determine a Lie algebroid on T A .  For example, 
we check that PTA is a homomorphism on sections. 

The necessary calculations may be made directly. However, we use a method which 
requires some tools. First, recall that a vector field X = t 'a/aq' on Q has the so-called 
tangent lift X = c ia/aq i  + g i a / a q i ,  an invariantly defined vector field on T Q .  With X 
viewed as a section of the tangent bundle X : Q --f T Q ,  we have 

X = - o T X .  (5.32) 

Also, X has the so-called vertical lift 2 = e 'a /ag ' .  We have the following lemma 

Lemma I. Bracket relations among lifted vector fields are 

[ X ,  Y ]  = [ X ,  Y ] '  (5.33) 

X , Y  = [ X , Y ] ^  (5.34) 

(5.35) 
[ '  -1 

With this notation, it is interesting to note that 

PTA(ai) = [PA(ac) l ' .  (5.36) 

We now carry out the direct verification that PTA is a homomorphism on sections: 

(5.37) 

(5.38) 

(5.40) 

(5.41) 
(5.42) 



= (pa[ai,  ajI) .̂ 
On the other hand we have 

(5.43) 
(5.44) 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

(5.50) 
0 

6. Examples 

Example 6.1. We have already seen that a Poisson structure R : T"Q -+ T Q  is really 
an algebroid structure on T'Q --t Q with anchor x ,  i.e. an algebroid with the following 
commuting diagram: 

T " Q  T Q  

I / Q  

Q .  
Taking tangents we get 

T Q .  
Now suppose that the tangent Poisson structure on T Q  is given by the bundle map 

Then T R  =-OTT o a-' where -: T T Q  4 T T Q  is the natural involution, and 
CY : TT'Q i T'TQ is a canonical involution (see 14, 5, 151). The two bundle pro- 
jections of T T Q  are related by q p  = Trpo -. Using these facts we find that the tangent 
Poisson structure on T Q  is given by the algebroid 

% : T'TQ i T T Q .  - 

T T Q  T'TQ - G 

V Q  1 /A*. (6.3) 

T Q  . 
To summarize, when Q is a Poisson manifold we have an algebroid structure on T'Q. 

with a tangent algebroid structure on TT*Q.  The tangent Poisson structure on T Q  gives 
rise to an algebroid structure on T'TQ.  These algebroid structures are intertwined by the 
canonical involution TT*Q E T'TQ. 

01 
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&ample 6.2. An integrable Dirac structure on a manifold Q is a Lie algebroid structure 
on a bundle L -+ Q ,  giving rise to a degenerate smooth foliation of Q by leaves equipped 
with degenerate closed 2-forms. Poisson and pre-symplectic structures are special cases of 
Dirac structures. We briefly review the facts here, (see [3, 41 for details; see [7, 81 for 
infinite dimensional examples and applications). 

A Dirac bundle over Q is defined to be a sub-bundle L c T Q f B T Q  which is maximally 
isotropic under the natural pairing ((X, w )  I (Y, p))+ = i ( { X ] p )  + (Ylw)); in the Poisson 
case (respectively pre-symplectic case), the Dirac bundles are graphs of the bundle maps 
B : T*Q + T Q  (respectively : T Q  + T*Q) .  Isotropy of L under the pairing ( , )+ 
means that for any (X, w ) ,  (Y. p) E r ( L )  we have w(Y) = - f i ( X ) ,  thus generalizing the 
skew symmetry of the bundle maps in the Poisson and pre-symplectic cases. 

A bracket is defined on Dirac bundles by 

[(X, a), (Y, ~ ) 1 =  ([XI Yl, LXK - LYW + d(w[Y))). (6.4) 

Compare this bracket that induced on 1-forms by a Poisson structure in (4.2). This 
bracket is in general not a Lie algebroid bracket; it becomes a Lie algebroid bracket when 
an integrability condition holds. Consider the function TL : L @ L @ L --t W given by 

T r ( ( X ,  w )  €3 ( Y ,  P )  0 (2, V I )  = (([X, YI,  LXP - LYw +d(o[Y))) I (Z, V I ) +  
- 1  - z(Xfi(Z) + Z q ( X )  + Zw(Y) + do(Y, Z) +dp(Z,  X) + dV(X, Y ) } .  (6.5) 

The isotropy of L makes TL into a 3-tensor on the vector bundle L.  If TL = 0 the Dirac 
structure L is called an integrable Dirac structure. 

Theorem 7. [See [4 ] . )  The bracket of equation 6.4 is a Lie algebroid bracket on L if and 
only if TL = 0. The anchor map is projected onto T Q .  

If T, = 0, then the distribution p ( L )  c T Q  obtained by projection is an integrable 
distribution (of possibly non-constant rank), whose leaves have closed 2-forms. 

The special cases of integrable Dirac structures which we have already cited are Poisson 
manifolds, where the leaves have non-degenerate closed 2-forms, and pre-symplectic 
structures, where there is only one leaf. Integrable Dirac structures were shown to have 
tangent lifts in [4]. 

Example 6.3. A Lie algebra G is a Lie algebroid over a point. It follows that its structure 
functions are constant; they are just the structure constants of the Lie algebra. Therefore 
the terms cfj = 0. The equations for the tangent algebroid structure now become 

(6.6) 

[ai, a j ]  = .Zj ut (6.7) 

(6.8) 
[a i .U, ]=o.  (6.9) 

k [ai ,  a j ]  = cij ak 

k .  [ai, U j ]  = C j j  C?k 

These are the Lie algebra brackets for the semi-direct product of G with itself. 

Example 6.4. Suppose that we are given G as the Lie algebra of a Lie group G. Then we 
may form the tangent Lie group TG, whose algebra is isomorphic to the semi-direct product 
908, which as we saw in the previous example, is the tangent Lie algebroid. Therefore, 
in this case the tangent Lie algebroid is the algebroid of the tangent group. 
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In the same way, i f  A is the algebroid of a Lie groupoid G, then we may form the 
tangent groupoid TG. It is shown as theorem 7.1 in I l l ]  that the tangent algebroid TA is 
the algebroid of the tangent groupoid TG. 

The author wishes to note that an invariant form of the construction of section 4.2, 
namely ' A  algebroid + A* Poisson + TA' tangent Poisson =+ (TA')' algebroid =+ 
T A  tangent algebroid', has been carried out independently by McKenzie and Ping Xu in 
[ 11 J using invariant methods. 
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