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Tangent Lie algebroids
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Received 28 September 1993

Abstract. This paper shows that a Lie algebroid stracture nnTa smoaoth vector bundle 4 5 4]
gives rise to a Lie algebroid structure on the bundle T A =5 T, colled the tangent Lie
algebroid. The analysis uses global arguments. A Lie algebroid A is equivalent to a certain
Potsson structure on A*, and the fangent bundle of any Poisson manifold has a tangent Poisson
structure. The tangent Poisson structure on TA™ is then dualized to produce the tangent Lie
algebroid structure on TA. Local calculations are used, and formulae for local brackets are

given.

1. Introduction

Poisson brackets are central to the subject of Hamiltonian systems. Poisson brackets may
be thought of as an algebra structure on some ring related to the ring of smooth functions
C*(Q) on a smooth manifold @. When the algebra exists on the ring of smooth functions
itself, the manifold is said to have a Poisson structure determined by the Poisson bracket.
A Poisson structure is equivalent to a bundle map 7 : T*Q — TQ together with an
integrability condition stating the Jacobi identity of the Lie bracket. A closed 2-form on
2 manifold @ determines a Poisson bracket on the ring of functions constant along the
characteristic distribution of the 2-form; this is called a pre-symplectic structure on Q.
A symplectic structure on a manifold is a pre-symplectic structure whose characteristic
distribution is zero, i.e. the map 7 : T*Q — T'Q is invertible.

A Lie algebroid is a vector bundle over a manifold with a Lie bracket on sections, and
with a bundle map to the tangent bundle, called the anchor map, that is also a Lie algebra
homomorphism on sections. Lie algebroids are very closely related to Peisson structures.
A Poisson structure on a manifold Q is a particular kind of Lie algebroid structure on the
cotangent bundle T*Q, with anchor map » : T"Q — T Q, whose integrability condition
is that the anchor is a homomorphism on sections; the bracket for this algebroid is written
down explicitly in section 3.

A Poisson structure on a manifold @ determines a special Poisson structure on the
bundle T, so it is not surprising that a Lie algebroid structure on a bundle A — @
determines a Lie algebroid structure on the bundle TA — T Q.

We now introduce some useful notation. If (g°) are a system of local coordinates on
the manifold Q, then the induced coordinates on T Q are given by (g%, /). Next, suppose
that f € C*(Q); we denote by f the ‘prolongation’ of f to TQ, namely the i-form df
viewed as a function on T Q. Locally f is given by

.9 .
f = é j = fviqr .
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We adopt the convention that upper indices are attached to functions, while lower indices
are attached to sections of bundles. Finally, by the linear functions on A — @, we mean
the sections of the dual bundle A* — (.

2. Algebroids and Poisson structures

We introduce some definitions and examples.

Definition 1. A Lie algebroid over a2 manifold Q is a vector bundle A > Q together with
a Lie algebra bracket on sections and a bundle map A L ro, resulting in the following
commuting diagram, which together satisfy two conditions:

A-EwTQO

“}2 % 2.1)

(1) The map g is a Lie algebra homomorphism between sections of A and vector fields on
O (i.e. sections of TQ = Q),
(ii) The following Leibniz rule holds for a function f € C™(Q) and sections X and Y of
A Q:
[X, f¥]1= fIX, Y1+ (p(X) )Y . (2.2}

Definition 2. A Poisson structure on a manifold @ is a Lie algebra bracket { , } on tie
ring of smooth functions C*(Q), which satisfies the Letbniz identity:

Equivalently, a Poisson structure on @ is a skew-symmetric bundle map = : T*@ —
T © whose associated 2-tensor (also denoted by m) determines the bracket on functions by

{f, g} =(mldf ndg}. (2.4)
The components of the tensor 7 are given by 7'/ = {g*, ¢/} in local coordinates {g*}.
The Jacobi identity for the bracket is then

g™ g gt g g Mgl =0, (2.5)

The left-hand side of this equation is the i jk-component of the tensor [, 7 ]—~the Schouten
bracket of m with itself. Thus a Poisson structure may be defined as a bi-vector field &
such that the Schouten bracket [7, 7] vanishes identically.

According to the definition a Lie algebroid structure on T*Q — Q is a bracket {«, 5}
on 1-forms o, B € T'(T* Q). As indicated in the introduction, there is such a Lie algebroid
bracket on 1-forms which agrees with the Poisson bracket on exact 1-forms.

3. Algebroids

It is well known that linear Poisson structures correspond to dual Lie algebras. For a review
of these and other facts, see [16]. In a linear Poisson structure, the Poisson bracket on linear
functions on the dual Lie algebra is given by the Lie algebra bracket on the Lie algebra
elements. We now extend this relationship.

Let [, ] be an algebroid bracket on the bundle A 5 Q. Sections of A are linear
functions on A*, and hence the algebroid bracket may be thought of as a Lie bracket on
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the linear functions on A*. We may go further and define a Poisson bracket { , } on A*
as follows. Let i, v denote the linear functions on A* determined by u, v € ['(4), and let
f-g € C=(Q) be funciions on the base. Then the relations

—r—

{&, ¥} = 1, v] (3.1)
{i, fomy= (oM flom (3.2)
{(fomgom}=0 (3.3)

determine a Poisson structure on A*; see [3] and [4]. That the Jacobi identity for { , } is
satisfied for linear functions follows because A is an algebroid, and it is satisfied for terms
mixing linear functions with functions on the base because g is a Lie algebra homomorphism
(see [3]). We now show that any Poisson structure on a vector bundie, whose linear functions
form a subalgebra, is dual to a Lie algebroid.

Theorem 1. The bundle w : A — @ is an algebroid on Q with anchor p: A - TQ if and
only if the dual bundle A* — @ is a Poisson manifold whose linear functions form a Lie
subalgebra.

Proof. Suppose we have a Poisson bracket { , } on A* — ( such that the linear functions
form a subalgebra. We may define an anchor p: A —> TQ by

p{p) ={x, }. (3.4)
To prove that p is an anchor we must show that p comes from a bundle map, ie.
p(fu) = fp(u) whenever f < C™(Q) and pn&T(4). (3.5)

This is established by successive application of the Leibniz rule for the Poisson bracket.
Let 1, v € T(A), and let f, g € C°°(Q); we may think of f and g as functions on A which
are constant on fibres (i.e. we identify them with f o, g o € C*(A)). Now {u, fv] =
Flg, vi+v{ee, £} must be linear, so functions of the form {x, f} must be constant on fibres.
This means that { fu, g} is constant on fibres, so { fu, g} = flu, g} + 1{f, g} is constant
on fibres; therefore {f, g} =0 and {fu, g} = flu, g}. Thus we have po(fu) = fo{u) and
¢ is a bundle map. Finally, identifying u with fi we obtain the derivation law

(i, fv] = flaevi+vin, £} (3.6)
= flu. v+ (o) fiv. (3.7)
Therefore p is an anchor and we have an algebroid bracket. 0

4. Tangent Poisson structures

As stated in the introduction. when a bundle map 7 : T* @ — T makes @ into a Poisson
manifold, there i1s a Lie algebroid structure on T*Q whose anchor is 7. We now give this
algebroid bracket, and determine as a consequence a Poisson structure on T induced by
m; for a proof that the following bracket together with m form a Lie algebroid see [3].

Example 4.1.  Given a Poisson structure 7 on , there is an algebroid structure on T*Q
with anchor map 7 given by

{et, B} = Lo — Lrpor — d(mwia A B) (4.1)
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where £ is the Lie derivative on i-forms «, 8 € I'(T*(3); see [3, 7, 12] and references
therein.
Applying the homotopy formula L& = £]d8 + d(£ |0}, we get

{a, B} = woe|dB — mBlde + dix | A B) . (4.2)
Note that for exact 1-forms ¢ = df and 8 = dg this gives us
{df.dg}=d{f g} (4.3)

If we choose local coordinates (gf) on @, so that & has local components 7t/ = {g/, ¢/},
then this algebroid structure on 7* @ is determined locally by

{dg’, dg’} = dig’, ¢’} (4.4)
= drn¥ (4.5)
=x,; dgt (4.6)

in other words the structure functions of the Lie algebroid are given locally by rr,;;j and the
anchor components are given by 7.

The previous example shows that 7* @ has a Lie algebroid structure whenever Q has a
Poisson structure. By theorem 1, it follows that the dual bundle to T*Q, namely TQ, is a
Poisson manifold whose linear functions form a subalgebra.

Theorem 2. If O has a Poisson structure given locally by 7/ in the coordinates (g*), then
T Q has a Poisson structure in tangent coordinates (g*, 4/) given by the relations

lg'.¢)y=my ¢t @7
l¢' ¢’y =n" (4.8)
l¢'. ¢}y =n 49
{g'.q’} =0. (4.10)
Proof. This is an application of (2.1)«(2.3), |

Note that the linear functions do indeed form a subalgebra. This induced Poisson
structure on T Q is called the tangent Poisson structure; see [2—4]. For alternative methods
of realizing the tangent Poisson structure, see {2, 5].

5. Tangent Lie algebroids

3.1. The swap map

Let A 5 O be a Lie algebroid, and let p : A* xg A — R be the natural pairing
plu,a) = {ula). We may take tangents o get Tp : TA* xrg TA — R x R; locally
this may be written as Tp((u, &), (a.a)) = ({ula) , {ula) + {# |a)). We project onto the
second factor, and denote the result

{u, @) [ (@, &)) = {ula) + {ila) .

This is a non-degenerate pairing TA* Xrg TA — R, and therefore we get an isomorphism
TA — (TA*)" given locally by

(@aay> (- [(@aa)).
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Theorem 3. The effect of the identification of TA with (T A*)* given by the tangent of
the natural pairing is to ‘swap’ a and 4.

Proof. The tangent pairing given above may be written as

G )] @ @) =[x @] {Z] e

so that (a,d) € T A becomes identified with (2, a) € (TA*)". O

5.2, The algebroid structure on T A

In this section we exploit theorem 1 several times, by replacing Lie algebroids with Poisson
structures and vice versa, We begin with a Lie algebroid A — @, so that A* is a Poisson
manifold. It follows that TA* is again a Poisson manifold, with the tangent Poisson
structure (a fact which also followed from theorem 1), Moreover, when viewed as a bundle
TA — TQ, its linear functions form a subalgebra. Therefore, by theorem I, the bundle
dual to TA* — T Q, namely (TA*)* — T, is again a Lie algebroid. Thus whenever A is
a Lie algebroid, there is an induced Lie algebroid structure on the bundle (TA*)* — T Q.
Finally, by using the swap map to identify T A with T A", we get an algebroid structure on
TA—>TO.

We now determine the local representation of the induced algebroid structure on
(TA*Y* — T Q. Choose a local trivialization of the bundle A — @, i.e. local coordinates
(g', a’), where the a’s are linear functions on A, determined by a local basis of sections
a; € T(A%).

Our choice of coordinates and local trivialization of A determines functions giving us
the bracket and anchor of A locally:

[, ;] = cf; a (5.2)
. 8
N pd 2
pla) = p; Pl (5.3
Then according to (3.1)<(3.3) the Poisson structure on the dual bundie A* is given by
{ai, o)} = cf; ax (5.4)
la;, g’} = o (5.5)
{g'.¢'} =0. (5.6)

We now compute the tangent Poisson structure on 7' A* in the coordinates {(g°, a;, ¢*, &)
on T A induced by the local trivialization {g’, ;) on A.

Theorem 4. The tangent Poisson structure on T A* is given by

{ai, &) = 5o + chin (5.7)
{&s, a5} = s (5.8)
{ae, &5} = (5.9)
{ar, g’} = pf (5.10)
{ai, ¢} = p] (511
{ar, ¢’} = o} (5.12)

with all remaining brackets zero.
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Proof This is an application of (4.7)~(4.10). It is straightforward to check the Jacobi
identity for these brackets, aithough this is guaranteed by theorem 1. O

Note that the linear functions of T4* — T @ form a subalgebra under this tangent
bracket. It tollows that the dual bundle (TA*)* — T @ is an algebroid.

Theorem 5. The tangent Poisson structure on TA* induces an algebroid structure on the
bundle (T A*)* — T 0 which is given locally by

(4,6 =& ax + ¢l du (5.13)
(G, 7] = ¢f; o (5.14)
la:, &) = cf; o (5.15)
{a;,g;]=0 (5.16)

.8
pla) =p —= (5.17)

dq/

, 8 .
.Y = o — ; T

plai) = p 597 + pi Tk (5.18)
Proof 'We have re-written as a Lie algebroid the Poisson bracket of theorem 4. |

In shorthand we have the brackets

fa,él =¢a+ca (5.19)
[d.a] =ca (5.20)
la,al=0 {5.21)

with anchor p(g, a@) = (pa, pa + pa).
Consider for the moment the Lie aigebroid A 5 @, and with anchor p, as the
commuting diagram
AL-TQO

“é) 0 (22)

Taking tangents we get the diagram
Tfa ’"? TTQ
Tn
T (3.23)
T

and applying natural involution ~: TTQ — TT( and the identity Ttrg =~ otrg we get
the diagram

TA s TTQ > TTQ
Tﬂ‘l T'I:‘Q

TQ

and heace we have this commutative diagram and the following theorem:

(5.24)

rp

74 2% 770

ref 7 (5.25)
A o
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Theorem 6. The Lie algebroid A 5 @, with anchor ps : A — T Q, induces a tangent Lie
algebroid structure on TA LN T Q. with anchor map pra =~ oTp4, given by

[, a1 = & éu + ¢ ax (5.26)

[G:, 5] = cf; (5.27)

[ar, 4] = c’c & (5.28)

[als a]] = (5.29)
)

plé;) = pi! 37 (5.30)
3 3

p(ac) = pz E;—J- + P; qu . (531)

Proof.  We have simply written down the algebroid bracket on (TA™)* and then applied
the swap map to get this bracket and anchor on T A.

Although no further proof is needed, it is interesting to carry out a direct verification
that the brackets and anchor above indeed determine a Lie algebroid on T A. For example,
we check that pr, is a homomorphism on sections.

The necessary calculations may be made directly, However, we use a method which
requires some tools. First, recall that a vector field X = E/8/8¢" on Q has the so-called
tangent lift X = &'8/3g" + £/8/34", an invariantly defined vector field on TQ. With X
viewed as a section of the tangent bundle X : @ — T (@, we have

=~oTX. (5.32)
Also, X has the so-called vertical lift X = £ {8/8¢'. We have the following lemma.

Lemma 1. Bracket relations among lifted vector fields are

[X.¥] =[x, Y] (5.33)
[X, ff] =[x, 7" (5.34)
{JE, 9] =0. (5.35)

With this notation, it is interesting to note that

prafay) = [pala)]’. (5.36)
We now carry out the direct verification that pr, is a homomeorphism on sections:
oralla, a1y = pa(cf e + cf;an) (5.37)
a ] g
e AP k = koar Y
= ¢ 0, Y + ¢, 0 b7 + ¢ i 5 (5.38)
] ]
_ Lk K ary
= Ce;pia—q, + (€308 a_q’ (3.39)
3 \.
(p,s[a,,a, ) (5.41)

= [pa(a). pa@)]” (5.42)
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= [pata), pata;)’] (5.43)
= [prata), pralap)] . (5.44)
We also have
pralla, a)]) = pralcha) (5.45)
.2
= ijpk @ (5.46)
= (pala;, a;]) " (547
On the other hand we have
_ _ R R
loralé), pra(@)] = | p; Fr P W + 6 P (5.48)
a 3
=o' pf =l —
=110 g £ Pl 3 (5.49)
= [pala), palapl” {5.50)
and therefore pra([a:, a;]) = [prald:), prald;) 1. O

6. Examples

Example 6.1. We have aiready seen that a Poisson structure xr : 70 — T Q is really
an algebroid structure on T*Q — @ with anchor x, i.e. an algebroid with the following
commuting diagram:

T*0 LA TO
e | / ©.1)
a.
Taking tangents we get

TT*0 %~ TTQ

Trg l /‘[‘Q (6.2)
TQ.
Now suppose that the tangent Poisson structure on T'Q is given by the bundle map

Tr:T'TO - TTQ.

Then Trw =~oTx o o' where ~: TTQ@ — TTQ is the natural involution, and

¢ 1 TT*Q — T*TQ is a canonical involution (see [4, 5, 15]). The two bundle pro-
jections of TT Q are related by 1rg = Trge ~. Using these facts we find that the tangent
Poisson structure on T @ is given by the algebroid

Tr

™rQ — TTQ
Tro l /'a- (6.3)
TQ.
To summarize, when @ is a Poisson manifold we have an algebroid structure on 7*Q,

with a tangent algebroid structure on TT* Q. The tangent Poisson structure on T'Q gives
rise to an algebroid structure on T*T Q. These algebroid structures are intertwined by the

o
canonical involution TT*Q = T*T Q.
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Example 6.2.  An integrable Dirac structure on a manifold ¢ is a Lie algebroid structure
on a bundle L — @, giving rise to a degenerate smooth foliation of @ by leaves equipped
with degenerate closed 2-forms. Poisson and pre-symplectic structures are special cases of
Dirac stroctures. We briefly review the facts here, (see [3, 4] for details; see [7, 8] for
infinite dimensional examples and applications).

A Dirac bundle over @ is defined to be a sub-bundle L C 77 Q@7 Q which is maximally
isotropic under the natural pairing ((X, @) [ (¥, p)}e = %((X i) + (¥|w)); in the Poisson
case (respectively pre-symplectic case), the Dirac bundles are graphs of the bundie maps
T T"Q — TQ (respectively 2. TQ — T* Q). Isotropy of L under the pairing (, )4
means that for any (X, @). (¥, 1) € T'(L) we have w(¥) = —u(X), thus generalizing the
skew symmetry of the bundle maps in the Poisson and pre-symplectic cases.

A bracket is defined on Dirac bundles by

Compare this bracket that induced on 1-forms by a Poisson structure in (4.2). This
bracket is in general rot a Lie algebroid bracket; it becomes a Lie algebroid bracket when
an integrability condition holds. Consider the function T, : L @ L @ L — % given by

Ti((X,0) @ (Y, 0) @ (Z,n) = ({{X, Y], Lxtt — Lyow +d(@ (YD) [(Z, )+
= H{Xu(Z) + Zn(X) + Zo(Y) + do(¥, Z) +du(Z, X) + dn(X, V)}.  (6.5)

The isotropy of L makes Ty into a 3-tensor on the vector bundle L. If Ty = 0 the Dirac
structure L is called an integrable Dirac structure.

Theorem 7. (See [4].) The bracket of equation 6.4 is a Lie algebroid bracket on L if and
only if 7y, = 0. The anchor map is projected onto T Q.

If T, = 0, then the distribution p(L) C TQ obtained by projection is an integrable
distribution (of possibly non-constant rank), whose leaves have closed 2-forms.

The special cases of integrable Dirac structures which we have already cited are Poisson
manifolds, where the leaves have non-degenerate closed 2-forms, and pre-symplectic
structures, where there is only one leaf. Integrable Dirac structures were shown to have
tangent lifts in [4].

Example 6.3. A Lie algebra G is a Lie algebroid over a point. It follows that its structure
functions are constant; they are just the structure constants of the Lie algebra. Therefore
the terms c = 0. The equations for the tangent algebroid structure now become

[ai,a;] = } {6.6)
[a:,a;] = ” g 6.7
la. ;] = (6.8)
a1, a]= (6.9)

These are the Lie algebra brackets for the semi-direct product of G with itself.

Example 6.4.  Suppose that we are given G as the Lie algebra of a Lie group G. Then we
may form the tangent Lie group TG, whose algebra is isomorphic to the semi-direct product
G®G, which as we saw in the previous example, is the tangent Lie algebroid. Therefore,
in this case the tangent Lie algebroid is the algebroid of the tangent group.
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In the same way, if A is the algebroid of a Lie groupoid G, then we may form the
tangent groupoid TG. It is shown as theorem 7.1 in [11] that the tangent algebroid T 4 is
the algebroid of the tangent groupoid T'G.

The author wishes to note that an invariant form of the construction of section 4.2,
namely ‘A algebroid =+ A* Poisson = TA* tangent Poisson = (TA*)* algebroid =
T A tangent algebroid’, has been carmried out independently by McKenzie and Ping Xu in
[11] using invariant methods.
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